THEOREM 6

A function f(x) has a limit as x approaches c if and only if it has left-hand and right-hand limits there and these one-sided limits are equal:

$$\lim_{x\to c} f(x) = L \qquad \Longleftrightarrow \qquad \lim_{x\to c^{-}} f(x) = L \qquad \text{and} \qquad \lim_{x\to c^{+}} f(x) = L.$$

FIGURE 2.24 Graph of the function in Example 2.

EXAMPLE 2 Limits of the Function Graphed in Figure 2.24

At x = 0: $\lim_{x\to 0^+} f(x) = 1$,

 $\lim_{x\to 0^-} f(x)$ and $\lim_{x\to 0} f(x)$ do not exist. The function is not defined to the left of x=0.

At x = 1: $\lim_{x \to 1^-} f(x) = 0$ even though f(1) = 1,

 $\lim_{x\to 1^+} f(x) = 1,$

 $\lim_{x\to 1} f(x)$ does not exist. The right- and left-hand limits are not equal.

At x = 2: $\lim_{x \to 2^{-}} f(x) = 1$,

 $\lim_{x\to 2^+} f(x) = 1,$

 $\lim_{x\to 2} f(x) = 1$ even though f(2) = 2.

At x = 3: $\lim_{x\to 3^-} f(x) = \lim_{x\to 3^+} f(x) = \lim_{x\to 3} f(x) = f(3) = 2$.

At x = 4: $\lim_{x \to 4^-} f(x) = 1$ even though $f(4) \neq 1$,

 $\lim_{x\to 4^+} f(x)$ and $\lim_{x\to 4} f(x)$ do not exist. The function is not defined to the right of x=4.

At every other point c in [0, 4], f(x) has limit f(c).